Characterization of the motor inhibitory role of colonic mucosa under chemical stimulation in mice.
نویسندگان
چکیده
The main roles of the colonic mucosa are the absorption of water and electrolytes and the barrier function that preserves the integrity of the colonic wall. The mediators and mechanisms to accomplish these functions are under continuous investigation, but little attention has been paid to a possible control of colonic motility by the mucosa that would fine tune the relationship between absorption and motility. The purpose of this study was to establish the role of the mucosa in the control of induced colonic contractility. Young ICR-CD1 mice (3-5 mo old) were studied. Isometric tension transducers were used to record contractility in full-thickness (FT) and mucosa-free (MF) strips from proximal colon. Proximal FT strips showed lower KCl- and bethanechol-induced responses than MF strips. The difference was not due to mechanical artefacts since the contractile response of FT strips to electrical field stimulation was around 50% lower than in MF. The inhibitory effects of the mucosa on FT strips were mimicked by immersion of separate strips of mucosa in the organ bath but not by addition of mucosal extract, suggesting gaseous molecules as mediators of this effect. Incubation of MF strips with synthase inhibitors of nitric oxide, carbon monoxide, and hydrogen sulfide abolished the inhibition caused by addition of the mucosal strip, indicating that mucosal gasotransmitters are the mediators of these effects. This suggests that the control of colonic motility exerted by the mucosa could fine tune the balance between transit and absorption.
منابع مشابه
Ovarian Stimulation by Exogenous Gonadotropin Decreases the Implantation Rate and Expression of Mouse Blastocysts Integrins
Background: Integrins are heterodimeric glycoprotein receptors that regulate the interaction of cells with extracellular matrix and may have a critical role in implantation. The aim of this study was to investigate the effect of ovulation induction on the expression of α4, αv, β1, and β3 integrins in mouse blastocyst at the time of implantation. Methods: The ovarian stimulated and non-stimulate...
متن کاملThe role of galanin receptors in anticonvulsant effect of low frequency stimulations on acquisition of perforant path kindled seizures in rats
Introduction: Low-frequency stimulation (LFS) has a delaying effect on kindled seizures acquisition. In the present study we examined the role of galanin receptors in the inhibitory effects of LFS on kindled seizures induced by electrical stimulation of perforant path. Methods: Animals were stimulated daily at the AD threshold intensity with a rapid kindling procedure. LFS was applied immed...
متن کاملPeripheral peptide YY inhibits propulsive colonic motor function through Y2 receptor in conscious mice.
Peptide YY (PYY) antisecretory effect on intestinal epithelia is well established, whereas less is known about its actions to influence colonic motility in conscious animals. We characterized changes in basal function and stimulated colonic motor function induced by PYY-related peptides in conscious mice. PYY(3-36), PYY, and neuropeptide Y (NPY) (8 nmol/kg) injected intraperitoneally inhibited ...
متن کاملEffect of Seizure During Pregnancy on Cognitive and Motor Coordination Performances in Adult Male Offspring of Female Mice: The Role of Serum Corticosterone Level
Introduction: Human and animal models have demonstrated that seizure during pregnancy can cause cognitive and motor impairments in the offspring. However, the mechanisms of this effect need to be elucidated. The purpose of this study was to investigate the effect of seizure during pregnancy on cognitive and motor performances of the adult male offspring with an emphasis on the hypothalamic–pitu...
متن کاملMice lacking the dopamine transporter display altered regulation of distal colonic motility.
The mechanisms by which dopamine (DA) influences gastrointestinal (GI) tract motility are incompletely understood and complicated by tissue- and species-specific differences in dopaminergic function. To improve the understanding of DA action on GI motility, we used an organ tissue bath system to characterize motor function of distal colonic smooth muscle segments from wild-type and DA transport...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Gastrointestinal and liver physiology
دوره 306 7 شماره
صفحات -
تاریخ انتشار 2014